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 MEASURING INSTANTANEOUS FLUID DYNAMIC
 FORCES ON BODIES ,  USING ONLY VELOCITY

 FIELDS AND THEIR DERIVATIVES

 F .  N OCA ,  D .  S HIELS AND  D .  J EON

 Graduate Aeronautical Laboratories , California Institute of Technology , m / s  2 0 5 – 4 5
 Pasadena , CA  9 1 1 2 5 , U .S .A .

 (Received 7 November 1996 and in revised form 20 January 1997)

 We present an exact expression for the evaluation of instantaneous forces on a body in an
 incompressible cross-flow which only requires the knowledge of the velocity and vorticity
 field in a finite and arbitrarily chosen region enclosing the body .  This expression is
 particularly useful for experimental techniques like Digital Particle Image Velocimetry
 (DPIV) which provide instantaneous ,  2-D velocity and vorticity fields but not pressure
 fields .  The present formula is tested on a numerical flow simulation using a high-resolution
 vortex method and experimentally with DPIV on a circular cylinder flow .
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 1 .  INTRODUCTION

 R ELATING THE UNSTEADY LOADING  on a bluf f-body structure with the associated wake is
 an ongoing research ef fort in the fluid mechanics community .  With the advent of
 Digital Particle Image Velocimetry (DPIV) ,  wake studies have been taken up to a new
 level ,  thanks to spatiotemporal investigations which are now part of laboratory routine .
 The question still remains whether the measurement of spatial distributions of vorticity
 at dif ferent instants of time can lead to an evaluation of the forces acting on a body .

 In Computational Fluid Dynamics (CFD) ,  two common methods for calculating
 forces are the direct evaluation of the pressure and the shear stress on the surface of
 the body and the concept of the fluid dynamic impulse over the entire vorticity field .
 The former method is dif ficult to apply because of the need to resolve the boundary
 layers on the body fully ,  where the velocity and vorticity gradients are very large .  The
 latter method has been applied in an experiment by Lin & Rockwell (1996) on the
 loading of an oscillating cylinder in quiescent water .  Starting the cylinder from rest ,
 they studied the flowfield at early times to help confine the vorticity to a small domain
 surrounding the body .  However ,  in most experimental cases ,  it is rare for vorticity to
 be confined to a finite domain .

 To remove some of the constraints imposed by these two methods ,  we present an
 exact formulation for the calculation of unsteady forces in incompressible ,  viscous ,  and
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 rotational flows ,  which relies only on the flowfield in a finite ,  arbitrarily chosen domain
 surrounding the body .

 2 .  FORMULATION

 As it often occurs in science ,  some results are often forgotten and are subject to
 rediscovery .  The formulation we are presenting is one such case .

 The complete formulation for viscous and rotational flows was already given by
 Moreau (1952) ,  but the author quickly turned his attention to a particular form of his
 equation ,  which was related to the fluid dynamic impulse concept and which could be
 handled analytically for simple and inviscid flow cases .  Saf fman (1993) presented an
 inviscid form of this formulation ,  but the reader may be left with the wrong impression
 that this formulation has no relevance for viscous flows .  It turns out that the Saf fman
 approach can be very accurate because the viscous terms are often negligible .

 A complete and clearer derivation of the general formulation is given by Noca
 (1996) ,  and the result is described herein .  The starting point for the force  F  is a
 control-volume approach for momentum conservation :
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 where  r   is the fluid density and is taken equal to unity ,   u  its velocity ,  and  Œ   the stress
 tensor .  Here ,  the material volume  V m ( t ) is bounded by an inner surface (corresponding
 to the body surface) and an outer material surface  S m ( t ) ,  with outward unit normal  n ,
 chosen at will .  Note that the stress tensor includes the pressure term .  After some
 lengthy algebraic manipulations (Noca  1996) ,  the pressure term can be eliminated ,  and
 the resulting force equation can be broken down into the sum of a volume integral and
 a surface integral ,  plus an extra term which describes the unsteady motion of the body
 surface  S b ( t ) :
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 where  N  is the dimension of the space under consideration ( N  5  2 in a two-dimensional
 space) and  v   the vorticity .  The tensor  Q   is given by
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 where  T  is the  y  iscous  stress tensor .  Note that we chose to write this expression using
 an arbitrary (non-material) volume  V  ( t ) bounded by a (non-material) surface  S ( t )
 moving with velocity  u s  .  If the surface  S ( t ) is taken to infinity such that it encloses the
 whole vorticity field—and ,  in two dimensions ,  if there is no net circulation around the
 body—then the surface integral vanishes and we recover the force as the time
 derivative of the hydrodynamic impulse (for a body in steady motion) .

 Relation (2) can be put in yet another form ,  similar to Saf fman (1993) ,  by converting
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 some of the surface integral terms to a volume integral .  For the case of a nonrotating ,
 solid cylinder ,  that transformation is as follows :

 R
 S ( t )

 [ 1 – 2 u 2 n  2  ( n  ?  u ) u ]  d S  5 E
 V  ( t )

 u  3  v  d V .  (4)

 Both versions of the equations were used in our experiments .

 3 .  NUMERICAL AND PHYSICAL EXPERIMENTS

 High-resolution CFD provided a good means for testing the proposed force relation
 given by equation (2) .  In this work ,  a particle-based vortex method (Koumoutsakos &
 Leonard 1995) is used for simulation of flow over an oscillating cylinder .  In this
 discussion we shall consider three methods for computing forces :  (A) the fluid dynamic
 impulse (i . e .  the integral of the first moment of the vorticity field) ;  (B) direct pressure
 and shear stress calculation ;  and (C) the new formulation based on equation (2) .
 Requiring neither the knowledge of the entire vorticity field (A) ,  nor the numerically
 dif ficult evaluation of the large vorticity gradients near the body (B) ,  method C can be
 preferable to A  &  B with no loss of accuracy .

 The test case was for an incompressible ,  2-D flow over a circular cylinder with
 Re  5  392 .  The cylinder was oscillated normal to the flow direction with velocity
 sin(4 π t  / 13)   to induce a strongly varying flowfield (our lengths were scaled by the
 cylinder diameter and velocities by the freestream velocity) .  The cylinder traveled 12
 diameters downstream from an impulsive start ,  resulting in the vorticity field in Figure
 1(a) .  A time step of d t  5  0 ? 0075 was used ,  and spatial resolution of approximately (in a
 Lagrangian sense) d x  .  0 ? 004 was maintained .

 Methods A and B have been verified in Koumoutsakos & Leonard (1995) for this
 class of flows .  The natural means of discretizing Method C for the computation used
 the particle locations (and assumed Gaussian basis functions) for volume integrals
 along with a bounding box to represent the surface  S ( t ) ,  as shown in Figure 1(a) .  The
 bounding box is considered to move with the flow ( u s  5  u ) for computation of the time
 derivative and has a spacing of d h  5  d x  (fine resolution) or d h  5  10  d x  (coarse
 resolution) .  The results of the fine resolution are shown in Figure 1(b) ,  showing good
 agreement with methods A & B .  The computation of lift using a fine resolution grid to
 discretize equation (2) ,  rather than the particle locations ,  results in the points plotted in
 Figure 1(b) .  Good agreement is again evident .  It was found ,  however ,  that results using
 a coarse resolution grid exhibited a good deal of error ,  unlike the plotted cases .  The
 results were insensitive to the size and velocity of the bounding boxes .  These
 observations on the ef fectiveness of Method C for extracting lift also held for
 determining the drag coef ficient .

 For the physical experiment ,  we chose to validate this technique on a cylinder wake
 flow .  The cylinder was attached to a two-component force balance and placed in a
 water tunnel at Re  5  19  000 to ensure a strong lift signal for the balance .  The flow field
 was measured with a DPIV system ,  allowing us to make instantaneous 2-D flow field
 measurements at midspan .  Our measurement box spanned from  2 1  ,  x  ,  1 ? 75 in the
 streamwise direction and  2 1  ,  y  ,  1 in the cross-stream direction ,  and did not include
 the large-scale vortex structures ,  which form further downstream .  The force formula
 requires flow data all around the cylinder ,  thereby necessitating the use of glass
 cylinders for seamless illumination .  We synchronized both data systems and collected
 data over 31 diameters of downstream motion ,  about 7 ? 5 shedding cycles .  Direct
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 Figure 1 .  (a) Vorticity field from computations with bounding box for force calculations .  (b) Comparison
 of lift forces obtained by several methods :   ?  ?  ? ,  Method A ( fluid - dynamic impulse method ) ;  — ,  Method B
 (  pressure and shear stress on body ) ;  -  -  - ,  Method C (  present formulation ) ;   1  1  1  ,  gridded Method C

 (  present formulation on regularly gridded data ) .

 application of equation (2) yielded noisy results .  While the viscous stress terms were
 essentially negligible ,  the time derivative of the hydrodynamic impulse term was very
 noisy in front of the cylinder .  We attribute this problem to under-resolving the
 forebody boundary layer .  Unlike the CFD study ,  we could only resolve to d t  .  0 ? 1 and
 d x  .  0 ? 03 .  Since the vorticity in the boundary layer is much larger than in the wake ,
 any error here is greatly amplified .  However ,  since this part of the flowfield is nearly
 steady ,  an assumption which is clearly not valid for moving bodies ,  we removed the
 time-derivative contributions from this region .

 After applying these corrections ,  the final result is presented in Figure 2 ,  along
 with the lift signal measured with the force balance .  We note several important
 features :

 1 .  Whereas the force balance measures a  spanwise - a y  eraged  force ,  the formulation
 essentially yields a  sectional  force since it is evaluated with data taken only at midspan .
 However ,  since we are using a 2-D formulation on a 3-D flowfield ,  we expect this is not
 the exact sectional force .

 2 .  The lift signal from the formulation and the force balance have the same  period .
 3 .  The  amplitude  of the sectional lift tends to be higher and the signal more irregular
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 Figure 2 .  Comparison of experimental lift forces :  ?  ?  ?  ,  present formulation using DPIV data ( sectional lift ) ;
 — ,  force balance ( spanwise - a y  eraged lift ) .

 than the lift from a force balance .  This is thought to arise from spanwise phase
 variations in the vortex shedding ,  as documented by Szepessy & Bearman (1992) .  The
 spanwise averaging by the force balance yields a lower amplitude signal because local
 spanwise variations will tend to cancel each other .

 4 .  These spanwise variations (Szepessy & Bearman 1992) also are related to the
 phase  variations of the sectional lift .  Figure 2 shows that from time 0 – 15 ,  sectional lift
 leads the force-balance lift ,  whereas from time 15 – 27 they are in phase .  At time 27 the
 sectional lift again jumps ahead in phase .  Meanwhile the force-balance signal has been
 constant in phase .

 5 .  Both signals show a positive mean value .  Because we used a large diameter
 cylinder (11  cm diameter model in a 50  3  50  cm water tunnel) ,  we believe that a slightly
 of f center location of the cylinder resulted in this asymmetry .  Nevertheless these two
 signals are consistent with each other in this regard .

 4 .  CONCLUSION

 We have presented an exact expression for evaluating body forces from only velocity
 and vorticity data .  With the availability of computational fluid dynamics and instan-
 taneous velocity field measurements ,  this expression can now be fully exploited for
 force measurements .  The primary advantage of this formulation is the minimal list of
 assumptions required for accurate measurement .  Requiring neither pressure fields and
 shear stresses on the body nor knowledge of the entire flow field ,  this formula seems to
 be particularly useful and simple to implement .  As we have shown ,  the formula is quite
 accurate for fully resolved computational results ,  and surprisingly informative even for
 the under-resolved experimental data presented here .  As technological advances
 improve spatial and temporal resolution ,  this formula will surely become increasingly
 useful for experimental force measurement .  Even for computational studies ,  this
 formulation has proved to be a useful alternative .  Because the velocity and vorticity
 fields are readily measurable ,  both experimentally and numerically ,  the formula is
 immediately useful for force measurements .
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